Quartzite selection in fluvial deposits: The N12 level of Roca dels Bous (Middle Palaeolithic, southeastern Pyrenees)

Miquel Roy Sunyer a,*, Rafael Mora Torcal a, Fco. Javier Plascencia Figueroa a, Jorge Martínez-Moreno a, Alfonso Benito-Calvo b

a Centre d'Estudis del Patrimoni arqueològic de la Prehistoria (CEPAP-UAB), Barcelona, Spain
b Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain

ARTICLE INFO
Article history:
Available online xxx

Keywords:
Quartzite
Fluvial terraces
Roca dels Bous
Procurement strategies
Middle Palaeolithic

ABSTRACT
The exploitation of rocks from secondary deposits is attested widely in the European Middle Palaeolithic. However, few studies have focused on analysing the implications derived from the management of these deposits. The fluvial terraces near the Mousterian site of Roca dels Bous have been sampled to determine their lithological composition and cobbles morphology. Comparison with artefacts recovered from level N12 indicate selection patterns in the fluvial deposits of black quartzite, as well as preferential management of blanks with specific morphological and volumetric characteristics. This approach reveals behaviours involved in the acquisition, transport, transformation and discard of stone tools necessary for Neanderthal subsistence, and indicates interest in the study of secondary deposits and local raw materials in Middle Palaeolithic contexts.

© 2015 Elsevier Ltd and INQUA. All rights reserved.

1. Acquisition of raw materials in secondary deposits

The physical environment and its natural resources embodied in the term “landscape” form an inseparable duality. Various approaches stress the need to characterize the geographic environment of archaeological sites in order to study the organization of subsistence of past hunter-gatherers (among others Higgs, 1972; Binford, 1979; Bailey, 1981; Bailey et al., 2011; Reynolds et al., 2011). In the reconstruction of those landscapes, studies of raw materials reveal connections between rock outcrops and archaeological artefacts recovered from sites (Delage, 2003).

Since the 1950s numerous petrological techniques have been used to identify sources of rocks used in archaeological contexts (Sieveking and Hart, 1986; Luedke, 1992; Malys-Selivanova et al., 1998; Bressy, 2002; Shackley, 2008; Parish, 2011; Roy et al., 2013). From this perspective, management of lithic resources and their connection with mobility patterns during the Middle Palaeolithic is a central issue (among others Tavoso, 1984; Geneste, 1985; Kuhn, 1995; Roth and Dibble, 1998; Fèbrot-Augustins, 2009; Meignen et al., 2009; Constance and Wilson, 2011; Delagnes and Rendu, 2011; Turq et al., 2013). Most studies have prioritized the study of rocks in primary position, i.e. those which are found in the place of their formation. Other sources of raw materials are “secondary geological deposits”, formed by rocks originating from the dismantling of pre-existing geological formations which are transported from a few metres to hundreds of kilometres. Their lithological composition is very varied as it is often a mix of materials from different provenances, which explains the singularity of this type of raw material source (Shelley, 1993; Turq, 2005; Lindsey et al., 2007; Marsaglia et al., 2010). The formation of secondary deposits is the result of disparate processes, differentiating between slope, alluvial, glacial and coastal deposits (Rapp and Hill, 2006).

Study of secondary deposits from an archaeological perspective is relatively recent. In a pioneering study, Shelley (1993) showed that raw materials selection in these deposits is an identifiable phenomenon, and occurs much more markedly than expected in the Dog Canyon and Llano areas (New Mexico, USA). Most studies are based on Shelley’s methodology, although the specific characteristics of each case hinder comparison between studies (García-Antón, 2010). By using classic techniques of sedimentology (Krumbein, 1941; Gill, 1969; Bunte and Abt, 2001), different qualitative and quantitative parameters which affect knapping activities (blank size, roundness, homogeneity of the matrix) can be measured, enabling precise characterization of such outcrops.
Fluvial deposits adjacent to the Roca dels Bous site are located in the final stretch of the middle course of the Segre, at the contact zone between the lower ranges of the Eastern Pre-Pyrenees, and the Ebro Basin (Fig. 2). In this area major Quaternary fluvial sedimentation is associated with the widening of the river channel on its passage through the escarpments of the Pre-Pyrenees. Rocks from these terraces are very common at Roca dels Bous suggesting acquisition of locally available resources (<5 km), a form of resource management which is common in the Middle Palaeolithic (Geneste, 1985; Feland-Augustin, 1997). To assess the importance of these resources, terraces in a 5 km radius of Roca dels Bous were mapped and sampled to determine the availability and characteristics of blanks, and make a lithological reference collection. The deposits, identified through cartography, orthophotography and available bibliography (Peña, 1983; Peña et al., 2011; ICC, 2014) were later checked against field observations.

3. Sampling methodology

Six of the eight terrace levels of the Segre River are located in the study area (Qt₁, Qt₂, Qt₃, Qt₄, Qt₅ and Qt₆). However, as Qt₅ is in an isolated area difficult to access, it was not studied (Fig. 2). Ten 1 m² samples were taken employing a technique of counting surface pebbles using a 10 cm grid sampling frame, and excluding rocks whose a-axis was <5 cm (Fig. 3); in this way n ~ 100 samples were obtained. This method provides reliable results on the lithological composition of the deposits and enables comparison with other studies (Shelley, 1993). Likewise, a 5 m² sample was taken with a 50 cm grid sampling frame, from which rocks whose a-axis was >13 cm were collected to assess differences in a population of larger volumes. Callipers were used to measure the main morphological axes of each sample (length -a-, width -b-, and thickness -c-) (Yuzek and Winkler, 1991). The following qualitative and semi-qualitative parameters were measured on freshly fractured surfaces: i) rock type; ii) foliation; (0 = no foliation, 1 = slight foliation, 2 = pronounced foliation), iii) grain size/crystallinity (VF = very fine, F = fine, M = medium, C = coarse, VC = very coarse, CGL = conglomerate), iv) roundness (using a visual chart) (Krumbein, 1941; Bunte and Abt, 2001), and v) groundmass homogeneity/phenocrysts. Each rock type was macroscopically identified, examples were stored in the reference collection, and samples selected to make thin sections.

Different indices used in sedimentology help characterize morphological features of cobbles and display them in binary and ternary diagrams (Shelley, 1993). Elongation ratio (b/a) and platyness ratio (c/b) indices were calculated which define the following morphologies: disc-shaped, spherical, bladed, and rod-like. The ψ ((b-c)/a²)¹/³ index reflects cobbles sphericity where 1 is fully spherical and 0 represents flat/elongated morphologies (Krumbein, 1941; Pye and Pye, 1943). Sneed and Folk (1958) established 5 (c/a) and F (a-b)/a-c indices which are plotted in ternary diagrams and reflect compact, platy, bladed and elongated morphologies. Finally, roundness (which should not be confused with sphericity) allows calculation of the mean roundness (Pm) which measures the degree of wear on cobbles (Bunte and Abt, 2001).

4. Description of deposits

Eleven localities were chosen for test pitting based on age and accessibility of deposits. 1011 samples were collected from ten 1 m² test pits, while 122 samples were recorded from a 5 m² test pit (Fig. 2). Sedimentary (48%) and metamorphic (38%) rocks dominate, while plutonic (11%) and filonitic (3%) rocks are less represented (Supplement 1; Fig. 4, left). Classification by rock type shows limestones to be the most abundant (43%) while quartzites are the
Fig. 2. Location of terrace deposits and samples in a 5 km radius of Roca dels Bous.

Fig. 3. Quaternary fluvial terrace deposits: a) sampling frame for 1 m² test pits; b) level Qt5 covering Eocene limestones of Cinglera de la Cascalda-Roca dels Bous; c) level Qt6 covering Oligocene strata (near the town of Camarasa); d) level Qt6, gravel deposit (near the town of Camarasa).
second major group (28%). The remainder of the assemblage is formed of hornfels, detrital rocks, schists, quartz, granites and porphyries (Fig. 4, right). All locations are similar although differences visible between test pits are attributed to internal variations of deposits or changes in the drainage area. In samples 4 (Lower Pleistocene), 7 and 8 (Holocene), metamorphic rocks diminish in favour of deposits or changes in the drainage area. In samples 4 (Lower Pleistocene), 7 and 8 (Holocene), metamorphic rocks diminish in favour of granite (Supplement 1). The decrease in rocks coming from the axial zone (metamorphic and igneous) may indicate energy loss of the watercourse following specific climatic events such as the last Glacial Maximum, although such inferences cannot be proven from the available data, and therefore we assume that the differences observed in the terrace samples are not significant.

Among the different lithologies, those which come from the dismantling of the Mesozoic and Cenozoic Pyrenean cover are dominant (different types of micritic and esparitic limestones, dolomites, quartz–bearing conglomerates and red sandstone from the base of the Permo-Triassic Buntsandstein facies and Keuper dolerites). Rocks from the axial Pyrenees are mainly represented by Ordovician quartzites, granites from Pyrenean batholiths, and hornfels originating from Pyrenean metamorphic contact aureoles. Other rock types are found in lesser proportions such as schists, porphyries and quartz fragments (Pocovi, 1978; Colombo and Cuevas, 1993; Barnolas et al., 1996; Teixell and Munoz, 2000; Pujalte and Schmitz, 2005; ICC, 2010).

The principal morphological axes of cobbles indicate average sizes on the a-axis from 80 mm to 420 mm. Indices of elongation-ratio and platyness-ratio place the assemblage in a central position although with a slight shift towards disc-shaped forms, reflecting oval and slightly flattened morphologies (Fig. 5), a trend maintained in all test pits and lithologies, apart from hornfels which have more bladed patterns (Supplement 1). All lithologies have roundness values near 0.8, indicating a high degree of transport. Sphericity shows a progression from less spherical forms in hornfels (0.55) towards more spherical patterns in granites and quartz, a phenomenon related to the rheological properties of these rocks. Sedimentary rocks (detrital and limestones) have average sphericity values, while the more isotropic mechanical properties of granites and quartz result in more spherical forms. In contrast, exfoliation planes of metamorphic rocks (hornfels, quartzites and schists) generate flatter/more elongated morphologies (Fig. 6).

The 5 m² sample showed the lithological composition to be determined by cobble size. Among large cobbles (a-axis >13 cm), an increase is seen in metamorphic rocks (48%), specifically quartzites (43%), as well as in Buntsandstein quartzitic conglomerates (11%) and in granites. These increases are offset by a progressive reduction in the proportion of limestones, which tend to disappear.

This same dynamic is evident in the other test pits. Among larger rocks (>480 cm³), the number of quartzites (40%), detrital rocks (12%) and plutonic rocks (15%) increases noticeably to the detriment of limestones (29%) which are not present among larger sizes. Inversely, there is an increase in the proportion of limestone (29%) which are not present among larger sizes. Inversely, there is an increase in the proportion of limestone (29%) which are not present among larger sizes. Finally this lithological progression is reflected in the morphologies of larger cobbles which are flatter and with sphericity below the average.

5. Characterization of quartzite

Quartzite is an important rock in this study due to its abundance in Roca dels Bous. Therefore, it merits a more detailed characterization here than the other rocks recovered, and one which takes into account only the Pleistocene terraces (Qt2, Qt3, Qt4, and Qt6).

Parameters such as grain size, inclusions, colour, foliation and alterations of the matrix were analysed (Tables 1 and 2). Quartzites are defined petrographically as granoblastic aggregates of allotriomorphic and heterometric quartz crystals, with undulatory extinction and variable preferential orientation depending on whether there is foliation or not, with small concentrations of phyllosilicates scattered between the matrix and allotriomorphic titanite crystals (Fig. 8). The absence of mafic minerals and feldspars indicate a sedimentary origin so they can be classified as paraquartzites (Fettes and Desmons, 2007).
Different varieties of quartzite have been identified, the most frequent being grey, medium-grained quartzite (6.5%), followed by fine-grained quartzite, fine- and medium-grained black quartzite, and white quartzite with percentage ranges from 2 to 4% (Table 1). Petrographic analysis indicates that these changes in colour are due to tiny quantities of minerals or substances other than quartz (biotite, organic material) (Fig. 8). A significant number were placed in a separate group because they were unsuitable for knapping, either because of foliation or because the matrix is altered. An increase in all varieties of quartzite is observed among larger sizes (≥480 cm³), with grey quartzite forming 13% of the sample while black quartzite ranges between 4 and 7%. A similar increase is seen in the 5 m² test pit, with the grey quartzite reaching 20.7% and the black quartzite only 2.7% (Table 2).

6. Selection of raw materials in level N12 at Roca dels Bous

Roca dels Bous (X = 321.266, Y = 4.638.067, UTM H31 N ETRS89, 275 m a.s.l.) is a rock shelter located at the foot of a 40 m high cliff of Eocene bioclastic limestone partially covered by Oligocene...
conglomeratic breccia (Fig. 1). It is on the right bank of the Segre River in the contact zone between the Eastern Pre-Pyrenees and the Northeast sector of the Ebro Basin (NE Iberian Peninsula) (Teixell and Munoz, 2000) (Fig. 2). The deposit is the result of continuous accumulation of debris during the Pleistocene in two conical bodies attached to the foot of the cornice (Benito-Calvo et al., 2009). Adjacent to the base of the deposit is the Qt3 terrace level, 18 m above the present-day riverbed, marking the altimetric position of the watercourse during the Upper Pleistocene (Fig. 3b).

The archaeological materials form discrete units delimited by sterile levels adapted to the morphology of the deposit, with very homogeneous sediment composition of angular limestone clasts and silty matrix. So far five archaeological units, attributed to the Middle Palaeolithic, have been excavated (R3, N10, N12, N14 and S9). In this article we focus on N12, ascribed to MIS 3.

The lithic assemblage was classified into discrete raw material units (RMU) (Roebroeks, 1988) following the same criteria used for the description of the terrace rocks. Techno-typological analysis was undertaken using the Logical Analytical System (Mora et al., 1994) noting attributes referring to the presence of cortex, patina, rolling and thermal alteration, which were then processed using ArqueoUAB software (Mora et al., 2010). Each RMU was macroscopically described, creating a raw material reference collection of archaeological specimens, and thin sections were made in order to complete characterization on a micro scale.

The study has determined the provenance of 97% of the artefacts, corresponding to 10 lithologies attributed to five different geographic/geological sources (Table 3). 85% of the N12 materials are from fluvial deposits; they are primarily quartzites (84%), and in lesser quantities other rocks such as limestone, hornfels, quartz, granite, radiolarite, slate and sandstone (<1%). Given the range of lithologies available in secondary deposits of the immediate environment, one would expect to find a greater variability of rock types on the site. However, results indicate a preference for quartzite. Limestone, quartz, hornfels and other rock types, which were regularly knapped in many Mousterian sites in the NE Iberian Peninsula, are practically invisible in N12 (among others Mora, 1988; Duran and Soler, 2006). The remaining 15% of materials are flint, which has not been identified in the terraces, and comes from primary outcrops in the regional environment located north and south of the site, implying transport distances of >10 km (Roy et al., 2013).

Table 3
Geological provenance of rock types identified in the N12 archaeological level.

<table>
<thead>
<tr>
<th>Rock type</th>
<th>Raw material provenance</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rock shelter</td>
<td>Fluvial deposits</td>
</tr>
<tr>
<td>Limestone</td>
<td>20 (0.10%)</td>
<td>26 (0.13%)</td>
</tr>
<tr>
<td>Hornfels</td>
<td></td>
<td>197 (0.95%)</td>
</tr>
<tr>
<td>Quartzite</td>
<td>16938 (83.52%)</td>
<td>172 (0.85%)</td>
</tr>
<tr>
<td>Quartz</td>
<td>54 (0.27%)</td>
<td>2 (0.01%)</td>
</tr>
<tr>
<td>Dolerite</td>
<td>19 (0.09%)</td>
<td>19 (0.09%)</td>
</tr>
<tr>
<td>Granite</td>
<td>2 (0.01%)</td>
<td>2 (0.01%)</td>
</tr>
<tr>
<td>Radiolarite</td>
<td>1 (0.00%)</td>
<td>1 (0.00%)</td>
</tr>
<tr>
<td>Shale</td>
<td>2 (0.01%)</td>
<td>2 (0.01%)</td>
</tr>
<tr>
<td>Chert/chalcedony</td>
<td>2053 (10.12%)</td>
<td>466 (2.30%)</td>
</tr>
<tr>
<td>Sandstone</td>
<td></td>
<td>2053 (10.12%)</td>
</tr>
<tr>
<td>Other</td>
<td>4 (0.02%)</td>
<td>2053 (10.12%)</td>
</tr>
<tr>
<td>Total</td>
<td>20 (0.10%)</td>
<td>17199 (84.81%)</td>
</tr>
</tbody>
</table>

Level N12, excavated over a surface of 95 m², is 20 cm thick and has a central sunken area between two debris cones. Fourteen flat hearths and one fire pit were identified, with diameters between 0.3 and 3 m, located usually against the rockshelter wall and, in some cases superimposed on each other, indicating that in N12 there was a succession of several occupations within a timescale which is difficult to determine precisely (Fig. 9) (Martinez-Moreno et al., 2010). At present, more than 25,000 remains have been catalogued; the lithic assemblage consists of 20,281 artefacts, of which 84% are quartzite and the remaining 15% are flint, a pattern which contrasts with that seen in other levels of the site. Preferential Levallois and hierarchical bifacial centripetal structured knapping systems dominate alongside expedient methods, although centripetal knapping methods sensu lato are exclusively on quartzite blanks. The small size of cores indicates intensive exploitation of raw material aimed at the production of small artefacts (Mora et al., 2012; de la Torre et al., 2014).

The lithic assemblage was classified into discrete raw material units (RMU) (Roebroeks, 1988) following the same criteria used for the description of the terrace rocks. Techno-typological analysis was undertaken using the Logical Analytical System (Mora et al., 1994) noting attributes referring to the presence of cortex, patina, rolling and thermal alteration, which were then processed using ArqueoUAB software (Mora et al., 2010). Each RMU was macroscopically described, creating a raw material reference collection of archaeological specimens, and thin sections were made in order to complete characterization on a micro scale.

The study has determined the provenance of 97% of the artefacts, corresponding to 10 lithologies attributed to five different geographic/geological sources (Table 3). 85% of the N12 materials are from fluvial deposits; they are primarily quartzites (84%), and in lesser quantities other rocks such as limestone, hornfels, quartz, granite, radiolarite, slate and sandstone (<1%). Given the range of lithologies available in secondary deposits of the immediate environment, one would expect to find a greater variability of rock types on the site. However, results indicate a preference for quartzite. Limestone, quartz, hornfels and other rock types, which were regularly knapped in many Mousterian sites in the NE Iberian Peninsula, are practically invisible in N12 (among others Mora, 1988; Duran and Soler, 2006). The remaining 15% of materials are flint, which has not been identified in the terraces, and comes from primary outcrops in the regional environment located north and south of the site, implying transport distances of >10 km (Roy et al., 2013).
The preponderance of black quartzite is reflected in all lithic categories, both in terms of weight and number of pieces, discarding interpretative distortions generated by fragmentation of the lithic assemblage. As regards weight, black quartzite represents 59% of the assemblage, implying transport to the site of 56 kg of raw material, of which the amount of flake fragments (24 kg) and flakes (19 kg) is striking, while cores and retouched pieces reach 6 kg and 5 kg respectively, indicating provisioning and management of these rocks on the site. As for the number of artefacts, 110 (53%) of the 207 cores in N12 are of black quartzite. Indications of knapping such as

Table 4
Quartzite types identified in the N12 archaeological level. Percentages calculated on the total number of artefacts in N12 (n = 20,281).

<table>
<thead>
<tr>
<th>Quartzite types in N12 level</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium grained black quartzites</td>
<td>11867</td>
</tr>
<tr>
<td>Medium grained grey quartzites</td>
<td>4388</td>
</tr>
<tr>
<td>Fine grained black quartzites</td>
<td>6</td>
</tr>
<tr>
<td>Other quartzite types</td>
<td>298</td>
</tr>
<tr>
<td>Not classified</td>
<td>389</td>
</tr>
<tr>
<td>Total</td>
<td>16938</td>
</tr>
</tbody>
</table>

Fig. 7. Evolution of relative frequencies of rock types in relation to cobble volume (Height \times Width \times Thickness).

Fig. 8. Thin section samples and archaeological examples of two types of quartzite and hornfels: Upper: geological samples; middle: archaeological samples; lower: archaeological material.
flake fragments and flakes form 70% and 60% of the assemblage respectively. A change is evident among retouched pieces which show preferential selection of flint from the regional environment for the production of pieces with modified edges (45%) (Martínez-Moreno et al., 2010).

The type of raw material is not the only parameter which may influence cobble election. Other factors such as morphology and size must have been important also. We indicated above that the proportion of quartzite increases when larger volumes only are considered (Fig. 7). Metric analysis indicates a dominance of slightly flattened and oval morphologies with a dominant a-axis and a b-axis slightly larger than the c-axis (Fig. 5). This suggests preferential exploitation — intentional or not — of relatively large (>10 cm) cobbles of such morphologies, which does not necessarily imply selective exploitation given that most cobbles have these morphological characteristics.

It is not easy to assess this perspective through the archaeological material, as the intensity of lithic reduction recorded prevents a rough reconstruction of original volumes and shapes. Although average length of the N12 quartzite artefacts might be an indirect indicator of size, average length of cores (4.6 cm), retouched pieces (3.8 cm), and flakes (2.5 cm) is not necessarily representative of original volumes as their systematic reduction generated numerous small fragments thus decreasing the average. Another indicator could be provided by the presence of artefacts larger than 5 cm in length as in order to get blanks of this size from centripetal methods larger blanks are necessary. As 45.4% of cores and 34.1% of retouched pieces are larger than 5 cm, as opposed to 2% of flakes, this indicator cannot be considered conclusive either. Furthermore, it should be noted that large cobbles are more versatile for the production of artefacts and one blank can generate several preforms, each of which can be modified separately. Likewise, the predominant shape of cobbles in the terraces — flat/oval — have angles which provide natural platforms facilitating knapping. Progress in studies on the reconstruction of cobble shape and volume through refitting (de la Torre et al., 2012) may help address this issue. Despite these problems, a process of double selection can be suggested. On the one hand, cobble acquisition in N12 focuses on black quartzite which is present in the environment but is relatively scarce; at the same time, the focus is also on relatively large (>10 cm), slightly flat/oval cobbles.

7. Discussion

The pattern of quartzite selection identified in level N12 at Roca dels Bous generates elements of discussion which go beyond this.
particular case, concerning methodological aspects related to sampling techniques applied and lead to inferences regarding Neanderthal knowledge of the environment and strategies for the acquisition of rocks. Some of these central arguments will be addressed below.

7.1. Secondary deposits: methodological remarks

The main advantage of the analytical methodology used for secondary deposits is to have a series of parameters that identify patterns of rock selection. Such an approach is not prevalent in studies of raw materials, usually focused solely on identifying source without examination of other associated behaviours.

Moreover, characterization of local materials has attracted little interest although they are in the majority in most archaeological sites. In contrast, priority has been given to establishing allochthonous materials, considered as long-distance markers, but which form a limited part of the tool assemblage and provide little information related to human behaviour. The current study highlights the importance of studying local materials, especially in the Middle Palaeolithic.

Some points that can be made regarding this methodology concern the choice of 1 m² areas to narrow sampling zones. Such a choice involves counting cobbles >5 cm, as required by the width of the grid (10 cm). This limitation can be overcome by 5 m² test pits which provide a good representation of the variability of lithologies and morphologies between 5 and 42 cm. Our 5 m² pit allowed identification of compositional changes when considering separately smaller cobbles (dominated by limestone) and bigger cobbles (among which quartzites are common). This observation indicates the need to continue sampling deposits with 5 m² test pits, focusing attention on cobbles >13 cm, to determine whether a similar pattern is repeated in all the Pleistocene terraces.

7.2. Management of resources in N12

Patterns in the management of lithic resources identified in Roca dels Bous N12 generate perspectives from which to analyse a key subsistence activity. Knowledge applied and transferred through time is shaped by techno-economic and techno-psychological decisions affecting selection of rocks for the production of artefacts (Boëda, 1991). Such behaviours, although not always highly visible archaeologically, indicate an intimate knowledge by human groups of the landscape and its resources. This view produces several observations with regard to N12.

The parameters documented respond to behaviours linked to a cultural tradition which influences selection of raw materials (Mora, 1988; Kuhn, 1991; Terradillos-Bernal and Rodríguez-Alvarez, 2014). Questions as to whether factors such as knapping aptitude or functional characteristics of tools determine decisions produce ambiguous results. Apparently, the varieties of quartzites are similar in their suitability for knapping, although this point deserves to be tested experimentally. Neither have substantial differences been identified in cobbles (secondary deposits); flake and core (archaeological artefacts) size between black and grey quartzites (Fig. 10, Supplement 2). The arguments, then, suggest that preference for black quartzite does not respond to techno-economic factors involved in knapping or tool function.

The above observation needs to be qualified. In the analysed samples, large, black quartzite cobbles form from 3 to 6% of the total. Such a slight increase could indicate an active search for large sizes which are more easily identified. This implies expert knowledge of the type of resource selected, particularly when rocks visually very similar such as hornfels – but not suitable for knapping – are barely represented (<1%) in the N12 lithic assemblage.

Black quartzite is very common in the Mousterian levels of Cova Gran de Santa Linya (personal observations; Mora et al., 2011), 14 km north of Roca dels Bous, so the idea that selection responds to a cultural constraint of Neanderthals in the region cannot be ruled out.

The selection of a particular type of rock from secondary deposits suggests similar mechanisms of selection of other rocks from more distant sources such as flint. In N12, 15% of the tool kit is made on flint originating from 10 to 15 km north and south of the site (Table 3). Flint is preferentially used in the production of retouched tools which are introduced as individual tools (Turq et al., 2013) or as reserves of raw material, as indicated by the presence of 50 flint cores (Martínez-Moreno et al., 2010). We believe that mechanisms of selection used for siliceous rocks were analogous with those identified for quartzite, as their transport from such distances cannot be understood without evidence for the testing and discard of poor quality raw material, which is very common in flint outcrops in this region (Roy et al., 2013). In addition, within the archaeological material, those varieties better suited to knapping are noticeably more abundant than they normally appear in outcrops. It is not easy to justify this inference through materials such as flint, and an approach similar to that undertaken in the fluvial terrace requires a more consistent sampling of primary deposits.

That is why the methodology presented here is so important. We believe that the selection processes determined in secondary deposits can be extrapolated to materials from primary flint outcrops. Such a view is particularly relevant for the Eastern Pre-Pyrenees as flint is the dominant raw material in some Mousterian levels of Roca dels Bous and dominates the entire Middle and Upper Palaeolithic sequence of Cova Gran.

7.3. Procurement strategies

The exploitation of quartzites from fluvial deposits indicates selection of a rock which is not very abundant and preference for relatively large cobbles (>10 cm). Such observations generate technical issues affecting Mousterian lithic assemblages, for example: What types of preforms are used in knapping? Are preforms prepared at outcrop locations? Are whole cobbles transported to consumption sites (Geneste, 1992; Dibble et al., 2005; Moore et al., 2009; Turq et al., 2013)? Such questions relate to whether acquisition is combined with other subsistence activities, is obtained from planned trips, or through exchange; all are scenarios which refer to models of embedded, direct or indirect procurement (Binford, 1979; Gould and Sagers, 1985).

It is not easy to assess these ideas, and different models may coexist in the same site. At N12, 86% (82 kg) of lithic artefacts are on rocks from the immediate environment, which most likely indicates exploitation of locally available resources, a pattern of management that is not out of place in the Middle Palaeolithic (Geneste, 1985; Ffeblot-Augustins, 1997). Nevertheless, transport of Garumnian chalcedony and flint from the Serra Llarga involves movement within a regional landscape similar to that defined by the Pre-Pyrenean river system. These points suggest that some N12 quartzite lithic artefacts may have come from terraces distant from the site, and brought to the site in the same way as flint, as part of personal gear (Féblot-Augustins, 2009).

Such a premise is not easy to confirm but one could analyse the form in which the material was transported; as pre-formed artefacts (cores or large blanks), or slightly tested cobbles. The presence/absence of cortical pieces would be a relevant attribute, as one might make a rough assumption that scarcity of cortical pieces indicates transport of blanks which are partially cortical and ready to knap. Alternatively, a significant number of fully or partially cortical blanks indicate transport of unmodified cobbles to the site.
where the cortex was removed. These are not rigid indicators and many factors, not always easily identifiable in the archaeological record, condition such inferences (Dibble et al., 2005).

Taking an exploratory approach, we compared the presence of cortex in several levels of the Middle Palaeolithic sites of Roca dels Bous (N10, N12 and N14) and Cova Gran de Santa Linya (S1B, S1B1, S1C, S1D and S1E). Both sites are in the same area and their lithic assemblages were excavated and analysed according to the same parameters. From more than 19,000 quartzite artefacts, groups were separated into fully cortical, partially cortical and non-cortical pieces. Preliminary results indicate two different tendencies: partially cortical pieces fluctuate around 6% of the assemblage in levels N12 and N14 at Roca dels Bous and S1B1, S1C, S1D and S1E at Cova Gran, while percentages reach 17% in Roca dels Bous N10 and Cova Gran S1B. The Pearson adjusted residuals test was used to determine the significance of these results (www.statgraphics.net, 2014). The test results indicate that the tendency in N10 and S1B differs from the other levels in having a greater percentage of partially cortical pieces (statistically significant difference \(\chi^2 \) = 101) (Table 5). Examination of the causes of this pattern merits future analysis as it could indicate changes in the management strategies of lithic raw materials in these sites.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Cortical, partially cortical and non-cortical pieces in the Middle Palaeolithic levels of Roca dels Bous and Cova Gran sites.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completely cortical</td>
</tr>
<tr>
<td>Roca dels Bous MP levels:</td>
<td></td>
</tr>
<tr>
<td>N10</td>
<td>9 (2.28%)</td>
</tr>
<tr>
<td>N12</td>
<td>355 (2.65%)</td>
</tr>
<tr>
<td>N14</td>
<td>63 (2.99%)</td>
</tr>
<tr>
<td>Cova Gran MP levels:</td>
<td></td>
</tr>
<tr>
<td>S1B</td>
<td>11 (4.49%)</td>
</tr>
<tr>
<td>S1B1</td>
<td>5 (1.45%)</td>
</tr>
<tr>
<td>S1C</td>
<td>26 (1.87%)</td>
</tr>
<tr>
<td>S1D</td>
<td>29 (2.88%)</td>
</tr>
<tr>
<td>S1E</td>
<td>0 (0.00%)</td>
</tr>
</tbody>
</table>

8. Conclusion

Study of the secondary deposits in the area around Roca dels Bous provides important information on human-landscape interaction. The methodology employed in the study of the Segre River terraces indicates patterns of provisioning focused on selection of a particular type of quartzite, black quartzite, which is not very abundant in the environment, as well as a bias in favour of relatively large, oval and slightly flat cobbles. Although reasons for selection are not easy to specify, we suggest that such technical behaviours were part of decisions guided by a deep-seated cultural tradition in the Middle Palaeolithic documented at Roca dels Bous and other sites in this area. This inference deserves further, more detailed study.

Our results indicate that during the Middle Palaeolithic lithic raw materials were subject to strong selection, implying that on the one hand Neanderthals knew exactly where those resources were in the landscape and, on the other used a number of strategies relating to the transport and consumption of rocks suitable for knapping. These observations reveal a complex cognitive environment and a 'know-how' which informs very specialized technical decisions in N12, such as the intense reduction of quartzite cores using structured knapping methods until they are of a size from which it is difficult to get more blanks (Martínez-Moreno et al., 2010; de la Torre et al., 2014).

Other aspects related to management of rocks have been determined in N12. Although management of lithic resources is focused on the local environment, the presence of regional materials such as flint indicates movements in which river courses seem to be important and imply acquisition of quartzite from more distant areas although it is not easy to quantify its frequency.

The mechanisms of selection proposed for black quartzite can be extrapolated to other rocks such as flint and chalcedony, although sampling methods such as those designed for the current study cannot be applied. This idea is of great interest when investigating behaviour patterns of human groups in Roca dels Bous and other sites in the region where flint is dominant.

Finally, we emphasize two elements which we believe should bear more relevance for raw materials studies but which are generally considered to be of limited interest: local resources and secondary deposits. The study of both has proven useful when identifying processes and behaviours which are not easy to detect using traditional approaches to analysis of raw materials in the Middle Palaeolithic.

Acknowledgments

Roca dels Bous is part of the project Human settlement during the Upper Pleistocene and Holocene in the South–eastern Pyrenees funded by the Spanish Ministry of Economy and Competitiveness (HAR2010-15002, HAR2013-42338). The fieldwork has been supported by Servei d’Arqueologia i Paleontologia-Generalitat de Catalunya. Thin sections were prepared by Carlos Sáez Dominguez (Thin Sections Laboratory, CENIEH). This is a contribution of the research group 2014SGR-0084. Miquel Roy Sunyer is a beneficiary of a pre-doctoral grant (FI-DGR2012).

Please cite this article in press as: Roy Sunyer, M., et al., Quartzite selection in fluvial deposits: The N12 level of Roca dels Bous (Middle Palaeolithic, southeastern Pyrenees), Quaternary International (2015), http://dx.doi.org/10.1016/j.quaint.2015.09.010
Please cite this article in press as: Roy Sunyer, M., et al., Quartzite selection in fluvial deposits: The N12 level of Roca dels Bous (Middle Palaeolithic, southeastern Pyrenees), Quaternary International (2015), http://dx.doi.org/10.1016/j.quaint.2015.09.010